欢迎来到池州三陆五信息科技有限公司- 未来科技

微信
手机版
网站地图

如何有效的进行数据治理和数据管控_1

2025-01-08 10:56:34 栏目 : 科技资讯大全 围观 : 0次

大家好,很高兴有机会和大家一起探讨如何有效的进行数据治理和数据管控的问题。我将用专业的态度回答每个问题,同时分享一些具体案例和实践经验,希望这能对大家有所启发。

文章目录列表:

如何有效的进行数据治理和数据管控

大数据时代的到来,让政府、企业看到了数据资产的价值,并快速开始 探索 应用场景和商业模式、建设技术 。但是,如果在大数据拼图中遗忘了数据治理,那么做再多的业务和技术投入也是徒劳的,因为很经典的一句话:Garbage in Garbage out。

当你处理或使用过大量数据,那么对“数据治理”这个词你一定不会陌生。你会思考数据治理是什么?数据治理是否适合你?如何实施。简单来说,数据治理就是处理数据的策略——如何收集、验证、存储、访问、保护和使用数据。数据治理也还包括谁来查看,使用,共享你的数据。

随着大数据时代的推进,以上这些问题日益 ,越来越多的企业依赖采集、治理、储存和分析数据,并实现他们的商业目标。数据变成了企业的盈利工具、业务媒介和商业机密。数据泄露会导致法律纠纷,还会令消费者对公司的核心业务失去信心。

如果抱着侥幸的心理,让各个业务部门自己管理数据,那么你会缺乏有效的数据管理,甚至各部门会自己做自己的。你无法想象各个部门按随心所欲地自己生产、储存、销售产品。数据使用不当就像库存使用不当一样,会给企业造成沉重的损失。因此必须制定一项测量用以保证所需数据的有效和安全,可用性,这就是我们要谈的“数据治理”。

数据治理策略必须包含完整的数据生命周期。策略必须包含从数据采集、清洗到管理,在这个生命周期内,数据治理必须要有关注以下内容:

数据从哪里来,数据怎么来

这是数据生命周期的起点。数据来源决定了数据治理策略的基础。例如数据集的大小就由数据来源所决定。是从目标市场、现存用户和社交媒体收集数据?还是使用第三方收集数据或者分析你收集的数据?输入数据流是什么?数据治理必须关注这些问题,并制定策略来管理数据的采集,引导第三方处理他们收集的数据或者分析你收集的数据,控制数据的路径和生命周期。

数据校验

通常数据源都是非常庞大且多样的,这是一个让数据管理者非常头疼的问题。将数据噪音和重要数据进行区分仅仅只是开始,如果你正从关联公司收集数据,你必须确保数据是可靠的,对于那些几万、几十万、甚至成百上千万的复杂关系数据,单靠人为的通过Excel对进行数据清洗已经不太现实,需要专业的数据清洗工具或系统对海量复杂关系数据进行批量查询、替换、纠正、丰富以及存储。将元数据、主数据、交易数据、参考数据以及数据标准内置固化到数据清洗工具或系统中,结合组织架构、内容管控、过程管控等管理机制、技术标准提高数据治理人员的工作效率。比如:需要手工编写程序收集的元数据,系统帮你自动获取;需要人工识别或编写代码实现的数据质量检查,系统帮你自动识别问题;用文档管理的数据字典,系统帮你 管理;基于邮件和线下的流程,系统帮你线上自动化。当然,系统并不是 的,数据治理的软件工具与其他软件工具一样,没有什么神奇之处,没有数据治理人员的参与和数据治理工作的推进,软件再 也无法完成数据治理整个过程。这也是为什么数据治理咨询服务一直有其市场,以及为什么国内大部分单纯数据治理软件项目未能达到预期目标。

数据治理必须解决存储问题

而数据存储和数据集的大小有密切关系。大数据的存储必须是在安全的冗余系统之中。常常利用层次体系,根据使用 率来存储数据。这样一来,昂贵的 系统提供的是被 繁请求的数据,而请求 率较低的数据则存储在便宜,可用率较低的系统上。当然,一些请求 率低但是敏感的数据如果存储于安全性较低的系统上,风险会大大提升。因此,在制定数据存储方案时,良好的数据治理策略必须考虑到方方面面的因素。

数据治理必须建立访问管理制度,在需求和安全性找到平衡点

明确访问者的权限,只能访问他们对应权限包含的数据。只有合法请求才能够访问数据,而敏感的数据需要更高的权限和更严密的验证才可以被访问。只向具有特定安全级别的用户开放。应该对用户和数据本身设置访问级别,管理账户时,应与人力资源部 购部紧密互动,这一点非常重要,因为这样可以及时地使离职员工和停止合作的供应商不再拥有访问权限。处理好这些细节以及确保数据所有权和责任,这是构成完整的数据治理策略的一部分。

数据的使用/共享/分析

如何使用数据是数据治理之后一项重要的内容,数据可能会用于客户管理,提高客户体验,投放定向广告,用户应用系统初始化基础数据工作,辅助应用系统建设,提供市场分析和关联公司共享数据。必须仔细界定哪些数据可用于共享或者用于营销,并保护它们免遭攻击和泄露,因为数据本来就应该被用于纯粹的内部用途。让用户知悉采集数据的所有公司都会遵守数据安全和保证的规定。能够确保数据被合理合规的使用,也是数据治理重要的一项内容。

收集、验证、存储、访问和使用都是数据安全计划的必要组成部分

收集、验证、存储、访问和使用都是数据安全计划的必要组成部分,必须要有一个全面的策略来解决这些问题以及其他安全问题。数据安全计划必须是有效且可用性高,但是数据生命周期的所有部分都很容易受到攻击和由于粗心造成的破坏。你必须在数据治理中确定数据安全计划,包括访问控制,静态数据,数据加工,数据传输之后的加密等。

管理/元数据

没有管理的数据生命周期是不完整的。例如,将元数据应用于一段数据,用来进行识别检索。元数据包含数据的来源,采集或生成的日期,信息访问的级别,语义分类及其他企业所必须的信息。数据治理能建立一个元数据词汇表,界定数据的有效期。请注意数据也会过期,过期之后我们只能用于 历史 数据的分析。

数据治理创建的过程中可能会在企业内部遭到一些阻力,比如有的人会害怕失去访问数据的权限,而有些人也不愿意和竞争者共享数据。数据治理政策需要解决上述问题,让各方面的人都可接受。习惯了数据筒仓环境的公司,在适应新的数据治理策略上面会有困难,但如今对大型数据集的依赖以及随之而来的诸多安全问题,使创建和实施覆盖全公司的数据策略成为一种必然。

数据日益成为企业基础设施的一部分,在企业一步步处理各种特定情况的过程中形成决策。它以一次性的方式作出,常常是对某一特定问题的回应。因此,企业处理数据的方法会因为不同部门而改变,甚至会因为部门内部的不同情况而改变。即使每个部门已经有一套合理的数据处理方案,但这些方案可能彼此冲突,企业将不得不想办法协调。弄清数据存储的要求和需求是一件难事,如果做得不好,就无法发挥数据在营销和客户维系方面的潜力,而如果发生数据泄露,你还要承担法律责任。

另外在大企业内部,部门之间会展开对数据资源的争夺,各部门只关注自身的业务情况,缺乏全局观念,很难在没有调解的情况下达成妥协。

因此公司需要一个类似数据治理委员会的机构,他的职责是执行现有数据策略、挖掘未被满足的需求以及潜在安全问题等,创建数据治理策略,使数据的采集、管护、储存、访问以及使用策略均实现标准化,同时还会考虑各个部门和岗位的不同需求。平衡不同部门之间存在冲突的需求,在安全性与访问需求之间进行协调,确保最 、最安全的数据管理策略。

建立数据治理委员会

负责评估各个数据用户的需求,建立覆盖全公司的数据管理策略,满足内部用户、外部用户甚至法律方面的各种需求。该委员会的成员应该囊括各个业务领域的利益相关者,确保各方需求都得到较好地满足,所有类型的数据所有权均得到体现。委员会也需要有数据安全 ,数据安全也是重要的一环。了解数据治理委员会的目标是什么,这一点很重要,因此,应该思考企业需要数据治理策略的原因,并清楚地加以说明。

制定数据治理的框架

这个框架要将企业内部、外部、甚至是法律层面的数据需求都纳入其中。框架内的各个部分要能够融合成一个整体,满足收集、清洗、存储、检索和安全要求。为此,企业必须清楚说明其端到端数据策略,以便设计一个能够满足所有需求和必要操作的框架。

有计划地把各个部分结合起来,彼此支持,这有很多好处,比如在高度安全的环境中执行检索要求。合规性也需要专门的设计,成为框架的一部分,这样就可以追踪和报告监管问题。这个框架还包括日常记录和其他安全措施,能够对攻击发出早期预警。在使用数据前,对其进行验证,这也是框架的一部分。数据治理委员会应该了解框架的每个部分,明确其用途,以及它如何在数据的整个生命周期中发挥作用。

数据测试策略

通常一个数据策略需要在小规模的商用环境中进行测试,用来发现数据策略在框架,结构和计划上的不足之处并进行调整,之后才能够投入正式使用。

数据治理策略要与时俱进

随着数据治理策略延伸到新的业务领域,肯定需要对策略进行调整。而且,随着技术的发展,数据策略也应该发展,与安全形势、数据分析方法以及数据管理工具等保持同步。

明确什么是成功的数据策略

我们需要确立衡量数据治理是否成功的明确标准,以便衡量进展。制定数据管理目标,有助于确定成功的重要指标,进而确保数据治理策略的方向是符合企业需求。

无论企业大小,在使用数据上都面临相似的数据挑战。企业越大,数据越多,而数据越多,越发需要制定一个有效的,正式的数据治理策略。规模较小的企业也许只需要非正式的数据治理策略就足够了,但这只限于那些规模很小且对数据依赖度很低的公司。即便是非正式的数据治理计划也需要尽可能考虑数据用户和员工数据的采集、验证、访问、存储。

当企业规模扩大,数据需求跨越多个部门时,当数据系统和数据集太大,难以驾驭时,当业务发展需要企业级的策略时,或者当法律或监管提出需求时,就必须制定更为正式的数据治理策略。

什么是数据治理

数据治理是逐步实现数据价值的过程,具体来说,数据治理是指将零散的用户数据通过采集、传输、储存等一系列标准化的流程变成格式规范、结构 的数据,并有严格和规范的综合数据管控;对这些标准化的数据进行进一步加工分析成为具有指导意义的业务监控报表、业务监控模型以帮助业务进行辅助决策。

在数据治理流程当中,涉及到了前端业务系统,后端业务数据库系统再到业务终端的数据分析,从源头到终端再回到源头,形成的一个闭环负反馈系统?。同样地,在数据治理流程当中,我们也需要一套标准化的规范来指导数据的采集、传输、储存以及应用。

数据治理流程

数据治理流程是从数据规划、数据采集、数据储存管理到数据应用整个流程的无序到有序的过程也是标准化流程9的构建过程。根据每一个过程的特点,我们可以将数据治理流程总结为四个字,即“理”、“采”、“存”、“用”。

1.理:梳理业务流程,规划数据资源

对于企业来说,每天的实时数据都会超过TB级别,需要采集用户的哪些数据,这么多的数据放在哪里,如何放,以什么样的方式放?这些问题都是需要事先进行规划的,需要有一套从无序变为有序的流程,这个过程需要跨部门的协作,包括了前端、后端、数据工程师、数据分析师、项目经理等角色的参与。

2.采:ETL采集、去重、脱敏、转换、关联、去除异常值

前后端将采集到的数据给到数据部门,数据部门通过ETL工具将数据从来源端经过抽取(extract)、转换(tran orm)、加载(load)至目的端的过程,目的是将散落和零乱的数据集中存储起来。

3.存:大数据高性能存储及管理

这么多的业务数据存在哪里?这需要有一高性能的大数据存储系统,在这套系统里面将数据进行分门别类放到其对应的库里面,为后续的管理及使用提供最大的便利。

4.用:即时查询、报表监控、智能分析、模型预测

数据的最终目的就是辅助业务进行决策,前面的几个流程都是为最终的查询,分析,监控做铺垫。这个阶段就是数据分析师的主场,分析师们运用这些标准化的数据可以进行即时的查询、指标体系和报表体系的建立,业务问题的分析,其至是模型的预测。

数据治理包括哪几个方面?

数据治理是一套持续改善管理机制,通常包括了数据架构组织、数据模型、政策及体系制定、技术工具、数据标准、数据质量、影响度分析、作业流程、监督及考核等内容。从技术角度来看,数据治理涉及的IT技术主题包括元数据、数据标准、数据质量、数据集成、主数据、数据资产、数据交换、生命周期、数据安全多产品组成的一整套解决方案。

元数据:采集汇总企业系统数据属性的信息,帮助各行各业用户获得更好的数据洞察力。

数据标准:对分散在各系统中的数据提供一套 的数据命名、数据定义、数据类型、赋值规则等的定义基准,并通过标准评估确保数据在复杂数据环境中维持企业数据模型的一致性、规范性。

数据质量:有效识别各类数据质量问题,建立数据监管,形成数据质量管理体系,监控并揭示数据质量问题,提供问题明细查询和质量改进建议。

数据集成:可对数据进行清洗、转换、整合、模型管理等处理工作。既可以用于问题数据的修正,也可以用于为数据应用提供可靠的数据模型。

主数据:帮助企业创建并维护内部共享数据的单一视图,从而提高数据质量, 商业实体定义,简化改进商业流程并提高业务的响应速度。

数据资产:汇集企业所有能够产生价值的数据资源,为用户提供资产视图,快速了解企业资产,发现不良资产,为管理员提供决策依据,提升数据资产的价值。

数据交换:用于实现不同机构不同系统之间进行数据或者文件的传输和共享,提高信息资源的利用率。

数据安全:提供数据加密、脱敏、模糊化处理、账号监控等各种数据安全策略,确保数据在使用过程中有恰当的认证、授权、访问和审计等措施。

生命周期:管理数据生命周期,建立数据自动归档和销毁,全面监控展现数据的生命过程。

今天关于“如何有效的进行数据治理和数据管控”的讨论就到这里了。希望通过今天的讲解,您能对这个主题有更深入的理解。如果您有任何问题或需要进一步的信息,请随时告诉我。我将竭诚为您服务。

展开剩余内容

分享到:

猜你喜欢

热门标签